

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub		Answers	Marking
INO.	Q. N.			Scheme
1	(A)	Attempt	any FIVE of the following:	10- Total
				Marks
	(a)	Define:		2M
		(i)	Admittance	
		(ii)	Conductance	
	Ans:	i)	Admittance-:	1 M
		Admittan	nce is defined as the reciprocal of impedance .It is denoted by Y.	for each
			$h_{1} = 11 (7)$	definitio
		it is giver	$1 \text{ by } \mathbf{Y} = (1/2)$	n
		ii)	Conductance:	
		Conducta	ance is the ratio of resistance to the square of impedance .It is denoted by G.	
		It is giver	n by G = (R/Z²)	

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

2 (b) Write the equation of open circuit Z parameter. 2M Ans: Solt & The equations for open circuit Z-parameters are $Z_{11} = \frac{V_1}{T_1} - (Ohm^2)$ ½M for Z 21 = 12 1 (ohms) each equatio Z12 = VI - (Ohms) n $Z_{22} = \frac{V_2}{Z_2} \left| z_{1,20} - (ohms) \right|$ Draw phasor diagram for R-L series circuit. (c) 2M Phasor diagram for R-L series circuit. Ans: Phasor diagram: 2M **≻** v ${\Phi}$

I

(OR)

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

f)	State Thevenins theorem.	2M	
Ans:	Any network containing active and/or passive elements and one or more dependent and/or independent voltage/or current sources can be replaced by an equivalent network containing a voltage source (Thevenin's equivalent voltage V_{TH} or V_{OC}) and a series resistance (called Thevenin's equivalent resistance R_{TH}), where V_{oc} or V_{Th} is the voltage measured across specified open terminals and R_{Th} is the resistance measured across the same terminals when all the sources present in the network are replaced by their internal resistances.	2M	
g)	Write the formula for Delta to Star conversion giving examples.	2M	
	Inte Thevenins theorem.2Ny network containing active and/or passive elements and one or more dependent and/or lependent voltage/or current sources can be replaced by an equivalent network ntaining a voltage source (Thevenin's equivalent voltage V_{TH} or V_{0c}) and a series resistance elided Thevenin's equivalent resistance R_{TH}), where V_{0c} or V_{Th} is the voltage measured across ecified open terminals and R_{Th} is the resistance measured across the same terminals when the sources present in the network are replaced by their internal resistances.2Nrite the formula for Delta to Star conversion giving examples.2Ne formula for Delta to Star conversion-2N V_1 V_2 V_3 R_a $R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$ $R_2 = \frac{R_a R_c}{R_a + R_b + R_c}$ $R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$ $R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$ $R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$		
Sub	Answers	Markin	

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total Marks

Subject Name: Electric circuits and network

<u>Model Answer</u> Subject Code:

22330

a)	For RLC series circuit draw voltage triangle, power triangle and impedance triangle along with proper labellings and equations for condition $V_L > V_C$.	4M
Ans:		Voltage
		triangle
	Solm -> For R-L-C series circuit (For cond VL7Vc)	1 M
	i) Voltage Triangle is given by	Impeda
	VAR	nce
	De Je	triangle
	VR	1M
	ii) Impedence Triangle for VL>Vc 15 given by	Power
	121 ×	triangle
	R R C W W is given by	-1 M
	iii) Power Inangle for VL/VC IS of the	Voltage
	Give Q=VISING OR ARDAN 2300	equatio
	$P = V_{2} \cos \varphi$ P = Achive Power	n-1/2M
	iv) The vity and current equations for VL7VC	Current
	$u(t) = V_m simut$	equatio
	$i(t) = \operatorname{Imsin}(\omega t - \varphi)$	n-1/2 N
b)	Define and state equations for (i) Active Power (ii) Reactive Power	4M
	(iii) Apparent Power.	
Ans:	i)Active Power (P):	Active
	The active power is defined as the average power Paue taken by or consumed by the given	power:
		1.5 M

tified)

and a

MAHARASHT (Autonomous)

(ISO/IEC - 2700

WINTER-18 EXAMINATION

Model Answer Subject Code:

Subject Name: Electric circuits and network

22330

	circuit.	
	(OR)	
	It is the nower which is actually dissinated in the circuit resistance	Reactiv
	$P = V.I.Cos \phi = I^2 R$	1.5 11
	Unit: - Watt OR Kilowatt	
	ii)Reactive Power (Q):-	
	It is the power developed in the reactive elements present in the circuit.	
	(OR)	Appar
	The reactive power is defined as the product of V, I and sine of angle between V and I.	1 54
	Q= V.I. sinØ	
	Units: - VAR OR KVAR	
	iii)Apparent Power (S):-	
	It is the product of rms values of applied voltage and current.	
	Unit: volt-ampere (VA) OR kilo-volt-ampere (kVA)	
	OR Mega-volt-ampere (MVA)	
	S=VI=I ² Z VA	
c)	Explain the steps for converting practical voltage source into practical current source.	4M
Ans:		
,		

Subject Name: Electric circuits and network

WINTER– 18 EXAMINATION vork <u>Model Answer</u> Subject Code:

22330

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

d)	Three resistances 32 Ω , 40 Ω , 48 Ω are connected in star circuit. Determine its equivalent delta circuit.	4M
Ans:	$R = R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}$ $R = R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}$ $= (32 \times 4^{\circ}) + (40 \times 48) + (48 \times 32)$ $\therefore R = 4736 \text{ A}$ $R_{23} = \frac{R_{1}}{R_{2}} = \frac{4736}{48} = 98.66 \text{ A}$ $R_{23} = \frac{R}{R_{3}} = \frac{4736}{48} = 148 \text{ A}$ $R_{23} = \frac{R}{R_{1}} = \frac{4736}{32} = 148 \text{ A}$ $R_{31} = \frac{R}{R_{2}} = \frac{4736}{40} = 118.4 \text{ A}$	

Attempt any THREE of the following :

3

8

12- Total Marks

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

a)	If $Z_1 = 3 + j7$ and $Z_2 = 12 - j16$ are connected in parallel. Find the equivalent impedance of combination.	41/1
Ans:	Equivalent impedance, $Z_{eq} = \frac{Z_1 Z_2}{Z_1 + Z_2} = \frac{(3+j7)(12-j16)}{(3+j7) + (12-j16)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8) + (20 < -53.13)} =$	Formula 1M Steps 1M
	$=\frac{152.4<13.67}{17.5<-40}=8.71<53.67=5.16+j7\ \Omega$	Ans. 2N
b)	Determine Bandwidth and Quality factor (Q) for the series circuit.	4M
Ans:		2 M
	Band width:	each
	The bandwidth of aseries circuit is given by the band of frequencies which lies between two	
	points on either side of f_0 where current falls to $I_0/\sqrt{2}$. (graph may be desirable)	
	$I_0 = \frac{V}{R}$ $\frac{I_0}{\sqrt{2}}$ B_{hp} B_{hp}	
	From the given fig., band width AB is,	
	$AB = \Delta f = f_2 - f_1$ or $AB = \Delta \omega = \omega_2 - \omega_1$ where f_1 and f_2 are the corner or edge frequencies.	

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

(OR)

$$\Delta f = f_t/Q_t = \frac{\frac{1}{2\pi\sqrt{LC}}}{\frac{1\sqrt{L}}{R\sqrt{C}}} = \frac{R}{2\pi L}$$
Quality factor:
Note: any one of the following can be considered
Reciprocal of power factor is called quality (*Q*) factor or its figure of merit. The *Q*-factor of aseries circuit can be defined as the ratio of impedance to resistance.

$$Q = \frac{Z}{R}$$
It is also defined as,

$$Q = 2\pi \frac{\text{maximum energy stored per cycle}}{\text{Energy dissipated per cycle}}$$
For a resonant circuit it may be determined in any of the following ways
() It is given by the voltage magnification produced in the circuit at resonance.
Voltage magnification = $\frac{V_{L_0}}{V_t} = \frac{I_0 X_{L_0}}{I_0 R} = \frac{\text{reactive power}}{active power} = \frac{X_{L_0}}{R} = \frac{\alpha_0 L}{R} = \frac{\text{reactance}}{\alpha_0 CR} = \frac{1}{\alpha_0 CR}$
 $\therefore Q = \text{factor}, \qquad Q_0 = \frac{\alpha_0 L}{R} = \frac{2\pi f_0 L}{R} = \tan \phi$

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

$$Q\text{-factor} = 2\pi \frac{\max \max \max \text{ denergy dissipated per cycle}}{energy dissipated per cycle} \qquad \dots \text{ in the circuit}$$

$$= 2\pi \frac{\frac{1}{2}Lt_0^2}{L^2 R T_0} = 2\pi \frac{\frac{1}{2}L(\sqrt{2}I)^2}{L^2 R (1/f_0)} = \frac{l^2 2\pi f_0 L}{L^2 R} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 C R} \qquad \dots (T_0 = 1/f_0)$$

$$\text{ii i)}$$

$$\text{resonant frequency, } f_0 = \frac{1}{2\pi \sqrt{(LC)}} \text{ or } 2\pi f_0 = \frac{1}{\sqrt{(LC)}}$$

$$\text{Substituting the above in equation, } Q_0 = \frac{2\pi f_0 L}{R}, \text{ we get,}$$

$$Q_0 = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$\text{iv) } Q\text{-factor of a resonant series circuit may be written as,}$$

$$Q_0 = \frac{\omega_0}{\max d + 1} = \frac{\omega_0}{\Delta \omega} = \frac{\omega_0}{R/L} = \frac{\omega_0 L}{R} = \frac{L}{R \sqrt{LC}} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$\text{v) It may also be deduced as,}$$

$$Q_0 = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 C R} = \frac{1}{R} \sqrt{\frac{L}{C}} = \sqrt{\frac{X_{LO} X_{CO}}{R}} = \frac{f_0}{B_{hp}} = \frac{\omega_0}{\omega_2 - \omega_1} = \frac{f_0}{f_2 - f_1}$$

$$\text{Where } B_{hp} = \text{ bandwidth of the circuit}$$

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

Subject Name: Electric circuits and network

Model Answer Subject Code:

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

Subject Name: Electric circuits and network

```
Model Answer Subject Code:
```

22330

Ans:	4.02 L= 9.53 MH	1M each
		for
		paramet
	240V. 50Hz	ers &
	Date willow !	1M for
	Data given 1- 9.55 MA V=240V, f=50H2	proper
	$R = 4\sqrt{2}$, $L = 133100$, 1000 , 1	steps
	i) Reactance, XL = 277fL = 2×3.14×50×9.55×10 = 3.02	followed
	ii) Impedance, Z = R+jXL = 4+j3 = 5/36.87.2	
	(i) Constant, $I = V = 240 = 48A$	
	110 Carl # 5	
	(1) Supedance, $\vec{x} = \sqrt{R^2 + \chi L^2} = \sqrt{4^2 + 3^2} = 5.2$	
(h)	Draw the shares diagrams for a series DL and series DC with AC supply	454
		/ /
(a)	Draw the phasor diagrams for a series RL and series RC with AC suppry.	4171
(b) Ans:	Phasor diagram of RL series circuit:	2M for
(b) Ans:	Phasor diagram of RL series circuit:	2M for each
(b) Ans:	Phasor diagram of RL series circuit:	2M for each diagram
(b) Ans:	Phasor diagram of RL series circuit:	2M for each diagram
(b) Ans:	Phasor diagram of RL series circuit:	2M for each diagram
(b) Ans:	Phasor diagram of RL series circuit:	2M for each diagram
(b) Ans:	Phasor diagram of RL series circuit:	2M for each diagram
(b) Ans:	Phasor diagram of RL series circuit:	2M for each diagram
(b) Ans:	Phasor diagram of RL series circuit:	2M for each diagram
(b) Ans:	Phasor diagram of RL series circuit:	2M for each diagram
(b) Ans:	Phasor diagram of RL series circuit: $V = V_{R} = V_{R}$	2M for each diagram
(b) Ans:	Phasor diagram of RL series circuit: $V V_L$ V_L V_R I	2M for each diagram

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

17

	Phasor d	liagram of RC series circuit:		
		V	V _R I -V _C	
(c)	Compare	e series and parallel circuits.		4M
Ans:				1M each
	Sr.No.	Series circuit	Parallel circuit	for any 4
	1	Element are connected end-on- end	Equi-potential ends are connected together	points
		$\mathbf{v} \stackrel{\mathbf{r}_{1}}{=} \\ \overset{\mathbf{r}_{2}}{=} \\ \overset{\mathbf{r}_{2}}{=} \\ \overset{\mathbf{r}_{3}}{\overset{\mathbf{r}_{2}}{\overset{\mathbf{r}_{2}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{3}}}{\overset{\mathbf{r}_{$	$\mathbf{v} \stackrel{\mathbf{+}}{=} \qquad \qquad$	
	2	Same current flows through all parts of the circuit.	Same voltage acts across all parts of the circuit	
	3	Different resistors have their individual voltage drops.	Different resistors have their individual currents.	
	4	Voltage drops are additive.	Branch currents are additive.	

Subject Name: Electric circuits and network <u>Model Answer</u> Subject Code:

	5	Applied voltage equals the sum of different voltage drops.	Individual voltages is equal to supply voltage	
	6	Resistances are additive.	Conductances are additive.	
	7	Powers are additive.	Powers are additive	
()	fig. 2)	2Ω	2ΩA	
		10 V <u>+</u>	В	

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

Ans:	$\frac{Step I}{I' 3 2} \qquad $	Corrct calculati on -4M
	$\begin{array}{c} 22\\ \hline 1' = I' \times (5+2) \\ \hline 1 = \frac{1 \cdot 08 \times 7}{1} = 0.694 \\ \end{array}$	
	$\frac{3 \text{tep } \widehat{II}}{\sqrt{1}} \left(\begin{array}{c} \text{Wilk } 12 \text{V } a & \text{loke} \end{array} \right)$ $\frac{3 \text{tep } \widehat{II}}{\sqrt{1}} \left(\begin{array}{c} \text{Wilk } 12 \text{V } a & \text{loke} \end{array} \right)$ $\frac{3 \text{tep } \widehat{II}}{\sqrt{1}} \left(\begin{array}{c} \text{Wilk } 12 \text{V } a & \text{loke} \end{array} \right)$ $\frac{3 \text{tep } \widehat{II}}{\sqrt{1}} \left(\begin{array}{c} \text{Wilk } 12 \text{V } a & \text{loke} \end{array} \right)$ $\frac{3 \text{tep } \widehat{II}}{\sqrt{1}} \left(\begin{array}{c} \text{Wilk } 12 \text{V } a & \text{loke} \end{array} \right)$	
	$I_{1}^{H} = \hat{I}_{2}^{H} \times 3 = \frac{1 \cdot 38 \times 3}{1 \cdot 38 \times 3} = 0.59 \text{ A}$	
	$\frac{3+4}{7} = 0.31 \text{ Here and } = 0.31 \text{ Here and } = 0.31 \text{ Here and } = 0.59 \text{ Here and } = 1.7 H$	

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	Derive the expression for resonance frequency for parallel circuit.	6M
	Ans:	A parallel circuit containing an inductance and a capacitance is said to be in resonance when the current through the parallel combination is in phase with the supply voltage.	Diagram 2M,
		Consider a parallel combination of L and C as shown below.	derivati on 4M

Subject Name: Electric circuits and network

WINTER– 18 EXAMINATION vork <u>Model Answer</u> Subject Code:

MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

WINTER-18 EXAMINATION

Subject Name: Electric circuits and network

<u>Model Answer</u> Subject Code:

22330

22

6M

From the diagram above, $I_{L} = V/Z$, $Sin\phi_L = X_L/Z$, $I_c = V/X_c$ Substituting these values in the above equation, the condition for resonance becomes $V/X_c = (V/Z)(X_L/Z)$ or $(X_L)(X_c) = Z^2$ Substituting $X_L = \omega L$ and $X_c = 1/\omega C$ $(\omega L/\omega C) = Z^2$ $L/C = R^{2} + (2\pi fL)^{2}$ $(2\pi fL)^2 = \frac{L}{C} - \frac{R^2}{L^2}$ $2\pi f = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$ If $f=f_r = resonant$ frequency, then, $f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$ If R is negligible, then $fr = \frac{1}{2\pi\sqrt{LC}}$ Calculate current through 8 Ω resistance using Norton's theorem.(Refer fig. 4) b)

WINTER– 18 EXAMINATION Subject Name: Electric circuits and network <u>Model Answer</u> Subject Code:

22330

BOARD OF TECHNICAL EDUCATION MAHARASHT (Autonomous) (ISO/IEC - 2700 tified)

WINTER-18 EXAMINATION Subject Name: Electric circuits and network

Model Answer Subject Code:

Subject Name: Electric circuits and network

Model Answer Subject Code:

MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network

22330

26 source to the load when the load resistance is equal to the Thevenin's equivalent resistance each of the given circuit as seen from load terminals" Explanat ion .i. e, R_I = R_{тн} 2M each In above figure a variable load resistance R_L is connected to an equivalent Thevenin circuit of original circuit. The current for any value of load resistance is, $I_L = \frac{V_{TH}}{R_{TH} + R_L}$ Then, the power delivered to the load is.. $P_L = I_L^2 \times R_L$. $P_L = \left(\frac{V_{TH}}{R_{TH} + R_L}\right)^2 \times R_L$ Maximum power transfer occurs when the load resistance R_L= R_{TH}. Substituting $R_L = R_{TH}$ in the above equation, we get $P_{I} = [V_{Th}/(R_{I} + R_{I})^{2}] R_{I}$ $= (V_{Th}/2R_{L}^{2}) \times R_{L}$ $P_{Lmax} = \frac{V^2}{4R_I}$ **Reciprocity Theorem :** Statement: In any linear bilateral network, if a source of emf E in any branch produces a current I in any

other branch , then the same emf E acting in the second branch would produce the same current I in the first branch.

(OR)

MAHARASHT (Autonomous) BOARD OF TECHNICAL EDUCATION (ISO/IEC - 2700 tified)

WINTER-18 EXAMINATION

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

	Page	
	calculated easily, without solving for all the internal voltages and currents in the network. Cascade configuration ABCD parameter :-	2111
Ans:	Significance of two-port network:- A two-port network is regarded as a "black box" with its properties specified by a matrix of	2M
-	(i) Cascade configuration ABCD parameter (ii) Series configuration	
c)	Explain significance of two-port network. Also draw two port network for	6M
	According to Reciprocity Theorem, the ratio of V / I called transfer resistance. It remains same	
	In the second circuit the positions of voltage source and ammeter are interchanged	
	source (V) in first loop and an ammeter in second loop in first circuit.	
	The various resistances R_1 , R_2 , R_3 are connected in the circuit diagram above with a voltage	
	$ \begin{array}{c} R_1 \\ R_2 \\ R_3 $	
	Consider the two circuits shown below.	
	Explanation :	
	obtained.	
	placed when the source is again put in the branch in which the current was originally	
	network is equal to the current through that branch in which the source was originally	

Subject Name: Electric circuits and network

22330

28

 N_2

V1"

_

۵

V2"

Subject Name: Electric circuits and network

WINTER-18 EXAMINATION

Model Answer Subject Code:

22330

		29
Where N_1 and N_2 are two 2-port networks		

Page 29/29

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following :	10- Total Marks
	(a)	Define impedance and reactance related to single phase AC series circuit. Give unit of both.	2M
	Ans:	Impedance of single phase AC series circuit is defined as the net opposition offered to the flow of AC current by the combination of R, L and C. Unit of Impedance is $\Omega(Ohm)$. Reactance of single phase AC series circuit is defined as the opposition offered to the flow of AC current by either inductor(L) or capacitor(C). Unit of reactance is $\Omega(Ohm)$.	Each correct definitio n with its unit- 1M
	(b)	Draw the impedance triangle for R-L series circuit.	2M

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Z	impedan ce triangle- 2M
Fig. impedance triangle for R-L series circuit.	
State Q factor for parallel R.L.C. circuit.	2M
Q factor for parallel R.L.C. circuit is defined as the current magnification provided at resonance. The magnitude of current flowing through inductor and capacitor is equal to Q times the input sinusoidal current I. As the parallel circuit magnifies the current it is also called as the current resonance circuit. OR The Quality factor of Parallel resonance RLC circuit is defined as the ratio of current circulating between its two branches to the line current drawn from the supply. Mathematically, Q = RXc	Any correct definitio n-2M
Give four steps to solve nodel analysis.	2M
 four steps to solve nodal analysis- 1.all the nodes present in the network including the reference(ground) node)are identified and marked. The number of equations to be solved is given by (n-1) where n= no of independent nodes. 2. Mark all the branch currents. 3. Using KCL write current equation for each node in terms of node voltage and sources present. 4. The equations can be solved either simultaneously or by Cramer's rule to obtain various node voltages. 	Each step - 1/2 M
	Z XL Fig. impedance triangle for R-L series circuit. State Q factor for parallel R.L.C. circuit is defined as the current magnification provided at resonance. The magnitude of current flowing through inductor and capacitor is equal to Q times the input sinusoidal current I. As the parallel circuit magnifies the current it is also called as the current resonance circuit. OR The Quality factor of Parallel resonance RLC circuit is defined as the ratio of current circulating between its two branches to the line current drawn from the supply. Mathematically, Q = RXc Give four steps to solve nodal analysis- 1.all the nodes present in the network including the reference(ground) node)are identified and marked. The number of equations to be solved is given by (n-1) where n= no of independent nodes. 2. Mark all the branch currents. 3. Using KCL write current equation for each node in terms of node voltage and sources present. 4. The equations can be solved either simultaneously or by Cramer's rule to obtain various and we with eace.

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Subject C 22330

	The current flowing through any element can be found out by substituting the value of node voltages in the relevant equation.	
e)	Write the formula for star to delta.	2M
Ans:	The formula for star to delta <u>Star to Delta (Y to ∆) Resistance</u> Conversion Formula	Corre formu e with
	$ \begin{array}{c} \hline V_{1} \\ \hline V_{2} \\ \hline R_{2} \\ \hline R_{3} \\ \hline V_{2} \\ \hline R_{3} \\ \hline R_{3} \\ \hline V_{2} \\ \hline R_{4} \\ \hline R_{5} \\ \hline R_{1} \\ \hline R_{2} \\ \hline R_{3} \\ \hline \end{array} $	2M
f)	State Thevenin's theorem.	2M
Ans:	Any network containing active and/or passive elements and one or more dependent and/or independent voltage/or current sources can be replaced by an equivalent network containing a voltage source (Thevenin's equivalent voltage V _{TH} or V _{OC}) and a series resistance (called Thevenin's equivalent resistance R _{TH})where V _{TH} is the voltage measured across open terminals A and B and Rth is the resistance across same terminals A and B when all the sources are replaced by their internal resistances.	Stater nt (2 Ma
g)	State the significance of two port network.	2M
		+

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network <u>Model Answer</u> Su

Subject C 22330

SOARD OF TECHNICAL EDUCATION MAHARASHT

(ISO/IEC - 2700) rtified)

(Autonomous)

SUMMER-19 EXAMINATION

Subject C 22330 Subject Name: Electric circuits and network Model Answer 5 1M-Power Solution -: Factor. Given -: R=10, c=200 UF, V=250V, f=50 HZ 1M-Power Copocitive Reactance, Xc:consum $X_c = \frac{1}{2\pi fc}$ ed $= \frac{1}{2 \times \pi \times 50 \times 200 \times 10^6}$: Xc = 15.91 2 - Impedence Z: - $|Z| = \int R^2 + X_c^2 = \int 10^2 + (15.91)^2$ ·: 12)=18.79 ~ Now, the total current I: $\therefore I = \frac{V}{Z} = \frac{250}{18.79} = 13.30 \text{ A}$ Power Factor, $\cos \phi = \frac{R}{Z} = \frac{10}{18.79}$ -: P.F. = (05 \$ = 0.53 (leading) And, the value of Power consumed by the circuit is P- $P = V \cdot I(0s \phi)$ = 250× 13.30×0.53 · P = 1762.25 watt OR -: P= 1.7622 Kwatt Scanned with CamScanner Describe the procedure to tune the given electrical circuit using the principles of b) 4M resonance. An electrical circuit can be tuned to resonant frequency in any one of the following ways: 4M Ans:
SUMMER-19 EXAMINATION Subject Name: Electric circuits and network Model Answer

Subject C 22330

	 i)If the circuit parameters like resistance ,inductance and capacitance are of fixed value, the resonant frequency is calculated .Then by connecting a function generator, the input frequency can be varied till the circuit is tuned to the desired resonant frequency. ii)If the circuit is to be tuned to a particular frequency, and the frequency of the supply cannot be varied, then by using either a variable capacitor or variable inductor, the variable element can be varied till the circuit is tuned to the desired resonant frequency. 	
c)	Find the current in 6 Ω resistor in the circuit shown in Fig. No. 1 using mesh analysis. $ \begin{array}{c} 3 \\ 24 \\ \hline Fig. No. 1 \end{array} $	4M

SUMMER-19 EXAMINATION Subject C 22330 Subject Name: Electric circuits and network Model Answer

Ans:
Step 1 -: Name the node and identify the loops -:

$$A = \frac{3}{24} = \frac{3$$

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

```
Model Answer
```

Subject C 22330

MAHARASHTI (Autonomous) BOARD OF TECHNICAL EDUCATION

(Autonomous) (IS O/IEC - 2700 rtified)

SUMMER- 19 EXAMINATION Subject Name: Electric circuits and network Model Answer

Subject C 22330

	Ans:		3M-for
		Replace the voltage sources VI and V2 by	R
		short circuit to obtain the circuit shown	
		below RI RZ	1M for
			power
		$RTH \neq RT + K2$	formula
		\therefore RTH = RI 11d R2	
		$= R_{TH} = \frac{R_1 \times R_2}{R_1 + R_2}$	
		But the condition for maximum power transfer	
		to the load 1s -	
		$K_{L} = R_{TH}$	
		. The value of RL = RTH so that maximum	
		power will transfer from source to it.	
		The equation for Pmax -:	
		$P_{L(max)} = \left(\frac{V_{TH}}{2} \gamma^2 R_{TH} \right)$	
		(RTH + RTH)	
		Substitute RL=RTH	
		. Therefore the power transfer to	
		the load is given by the equation	
		$f_{1} = \sqrt{\frac{2}{TH}}$	
		4 RTH	
0			
Q.	Sub	Answers	Marking
NO.	Q. N.		Scheme
3		Attempt any THREE of the following :	12- Total
			Marks
	2)	List the nower factor improves technique and evolain any one with advantage and	414
	aj	disadvantage	4101
	Ans:	Power factor improvement techniques are	2Marks
			for
		I) Synchronous Motors (or capacitors)	Listing
		ii) Static Capacitors	Techniq
			ues

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Electric circuits and network

Subject C 22330

	i) Syn ove cor ii) Sta mo Sin unl iii) Pha tha	achronous Motors (or ca er-excited and, especial recting the power factor rection can be varied by tic Capacitors : They are tors and are practically ce their capacitance is n ess arrangements for au ase Advancers : They are t the economical degree	pacitors) : These machines dra ly, when they are running in r in bulk and have the special a y changing their excitation. e installed to improve the por loss-free (i.e. they draw a curr not variable, they tend to ove stomatic switching of the cap fitted with individual machin e of correction to be applied in	aw leading kVAR when they are dle. They are employed for advantage that the amount of wer factor of a group of a.c. rent leading in phase by 90°). r-compensate on light loads, acitor bank are made. es. However, it may be noted a each case, depends upon the	2Marks for any one techniq e
	tar	ff arrangement betwee	n the consumers and the sup	ply authorities.	
b)	Compar	e series resonance to pa	rallel resonance on the basis o	of:	4M
b)	Compar (i) (ii) (iii) (iv)	e series resonance to pa Resonant frequency Impedance Current and Magnification.	rallel resonance on the basis o	of:	4M
b) Ans:	Compar (i) (ii) (iii) (iv)	e series resonance to pa Resonant frequency Impedance Current and Magnification.	rallel resonance on the basis o	of:	4M 1 mark
b) Ans:	Compar (i) (ii) (iii) (iv) S.No.	e series resonance to pa Resonant frequency Impedance Current and Magnification. Parameter	rallel resonance on the basis of Series Circuit	of: Parallel Circuit	4M 1 mark for each point
b) Ans:	Compar (i) (ii) (iii) (iv) S.No. 1	e series resonance to pa Resonant frequency Impedance Current and Magnification. Parameter Resonant frequency	rallel resonance on the basis of Series Circuit $f_r = \frac{1}{2\pi\sqrt{LC}}$	Parallel Circuit $f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$	4M 1 mark for eacl point
b) Ans:	Compar (i) (ii) (iii) (iv) S.No. 1 2	e series resonance to pa Resonant frequency Impedance Current and Magnification. Parameter Resonant frequency Impedance	rallel resonance on the basis of Series Circuit $f_r = rac{1}{2\pi\sqrt{LC}}$ Minimum, Z = R	Parallel Circuit $f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$ Maximum, Z = L/CR	4M 1 mark for each point

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

	4	Magnification	Voltage magnification takes	Current	magnification	
			place	takes place	2	
c)	Write t applica	he procedure to conve tion. Draw neat diagra	rt voltage source into equivalent ms of both the sources.	t current sou	rce. Give its	4M
Ans:	A volta equival The ste	ge source with a seri ent current source wit ps for converting prac	es resistance can be converted th a parallel resistance. tical voltage source into practic	l into (or re al current so	placed by) and	2 marks for Procedu re
	i)Find th and B.	he value of current sup	oplied by the source when a 'sho	ort' is put ac	ross terminals A	
	Therefo	ore,	/=			
		Currei	nt I=V/R			
	ii)The v have th	alue of resistance whic ie same value of series	h is connected in parallel with tl resistance(Rs=Rsh).	he equivalen	t current source	
	ii)This e resistan	equivalent current so nce.	urce is then connected in para	llel with the	e shunt(parallel)	
		v v	A + V B B A + B B A + B B B A + B B B A B B B A B B B B A B B B B B B B B			1 mark for diagram

Subject Name: Electric circuits and network

SUMMER-19 EXAMINATION

Model Answer

Subject C 22330

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
4		Attempt any THREE of the following :	12- Total
			Marks
	(a)	In a series circuit containing pure resistance pure inductance, the current and voltage are	4M
		expressed as:	
		I(t) = 5 sin (314t + 2 П/3) and v(t) = 20 sin (314t + 5 П/6)	
		Find:	
		(i) Impedance of circuit	
		(ii) Resistance of circuit	
		(iii) Inductance in circuit	
		(iv) Average power drawn by circuit.	
	Ans:	I(t) = 5 sin (314t + 2 П/3) and v(t) = 20 sin (314t + 5 П/6)	
		Converting the above standard sinusoidal forms into polar forms	
		Rms values of current and voltage are	
		I = 5/ $\sqrt{2}$ = 3.54 A ; V = 20/ $\sqrt{2}$ = 14.14 V	
		Converting the above standard sinusoidal forms into polar forms	
		Ī́= (3.54 ⊥120°) Α	
		<i>V</i> = (14.14 ⊥150°) V	1 mark for
		By Ohm's law,	Impeda nce
		Circuit Impedance, $\vec{Z} = \vec{V} / \vec{I} = (14.14 \lfloor 150^\circ) / (3.54 \lfloor 120^\circ)$	
		= (4 L30°) Ω	

MAHARASHT (Autonomous) BOARD OF TECHNICAL EDUCATION

(Autonomous) (IS O/IEC - 2700 rtified) ******* · 1**

SUMMER-19 EXAMINATION

	SUMMER- 19 EXAMINATION		
bject	Name: Electric circuits and network <u>Model Answer</u> Subject C	22330	
			15
	=(3.46+j2) Ω		
	From polar form of Impedance		
	i) Impedance of circuit = Z = 4 Ω	1 fc R	mark or esistan
	From Rectangular form of impedance	c	е
	ii) Resistance of circuit R = Z Cos ϕ = 4 Cos(30) = 3.46 Ω		
	iii) Inductance of circuit L		
	we know that XL = 2 Ω (from rectangular form of impedance)	1	mark
	$X_L = 2\pi fL$	fc Ir	or Iductan
	L = X _L /2 π f = 2/(2 π ×50) = 6.37 × 10 ⁻³ H	C	9
	From polar form of Impedance , ϕ =30°		
	So, pf=cosφ		
	=cos30°		
	=0.866 lagging	1	mark
	iv) Average power, P=VI Cos ϕ	fc A	or verage
	= 14.14 x 3.54 x cos30°	p	ower
	=43.35 W		
(b)	Find I, I1,I2 power factor of the circuit in Fig. No. 4	4	M

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Subject C 22330

18

• $I_2 = I \times \frac{Z_1}{Z_1 + Z_2} = (20.33 \lfloor -16.52) \frac{(10 \lfloor 53.13)}{(10 \lfloor 5.71)}$ = $(20.33 \lfloor -16.52) (1 \lfloor 47.42)$ $\therefore I_2 = 20.33 \lfloor 30.9^\circ A$ • Power factor = $\cos \phi = \cos (-16.52)$ = 0.958 (agging (c) Explain the term bandwidth of a series resonant circuit. Derive its equation. 4M Band width (BW) of a series resonance circuit is defined as the range of frequency over which Explanat Ans: ion 2 circuit current is equal to or greater than $\frac{Ir}{\sqrt{2}}$ or 70.7 % of maximum current where I₀ or I_r = Marks current at resonance. The resonance curve for a series RLC circuit is shown below: f, →f f, ĥ From the graph it is clear that for all frequencies lying between f1 and f2 the circuit current is equal to or greater than 70.7 % of maximum current i.e.

MAHARASHT (Autonomous) CBOARD OF TECHNICAL EDUCATION (Autonomous) (IS O/IEC - 2700 rtified) ****** · 140

SUMMER-19 EXAMINATION

SUMMER- 19 EXAMINATION		
Subject Name: Electric circuits and network Model Answer Subject Comparison	22330	
		19
Ir = V/R		
Thus Band width of the circuit, BW = $\Delta f = (f_2 - f_1) Hz$		
Or BW = $\Delta \omega = (\omega_2 - \omega_1)$ rad/sec		
Derivation of equation for bandwidth -		
The relationship between bandwidth , Q factor and resonant frequency is	given by	2marks for
$(f_2 - f_1) = f_r/Q_r$		Derivati on
Where $f_2 - f_1$ = bandwidth, f_r =resonant frequency and $Q_r = Q$ factor at reso	nance	
But $f_r = \frac{1}{2\pi\sqrt{LC}}$		
And $\mathbf{Q}_{\mathrm{r}} = \frac{1}{R} \sqrt{\frac{L}{C}}$		
Substituting these values in the equation for bandwidth,		
$\Delta \mathbf{f} = \mathbf{f}_r / \mathbf{Q}_r = \frac{\frac{1}{2\pi\sqrt{LC}}}{\frac{1}{R}\sqrt{\frac{L}{C}}} = \frac{R\sqrt{C}}{2\pi\sqrt{CL^2}} = \frac{R}{2\pi L} \mathbf{H}_z$		
Therefore bandwidth $\Delta \mathbf{f} = \mathbf{f}_2 - \mathbf{f}_1 = \frac{R}{2\pi L}$ Hz		
OR		
$\Delta \omega = 2\pi \Delta f = \frac{R}{L} rad/sec$		

Subject Name: Electric circuits and network

SUMMER-19 EXAMINATION

Model Answer

Subject C 22330

(d)	A bridge network ABCD has arms AB, BC, CD and DA of resistances 1, 1,2 and 1 ohm respectively . If the detector AC has a resistance of 1 ohm, determine by star/delta transformation, the network resistance as viewed from the battery terminals.	4M
	$B = \frac{1 - \Omega_{\text{NNN}}}{2} + \frac{1 - \Omega_{\text{NNN}}$	
Ans:		
		2 marks for Converti ng delta to star
		2 marks for Network resistan ce

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

MAHARASHT (Autonomous) (ISO/IEC - 2700)

4e) Replace He is v source by a short circuit, kuping sev

$$3H \int \frac{1}{160} \int \frac{1}{60} \int \frac{1}{160} \int \frac$$

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Г

Model Answer

Subject C 22330

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	 A coil of resistance 20 Ω and 200 µH is in parallel with a variable capacitor. The voltage of the supply is 20 V at a frequency of 10⁶ Hz. Calculate : (i) The value of C to give resonance. (ii) The Q of the coil. (iii) The current in each branch of the circuit at resonance. 	6M

Subject Name: Electric circuits and network Model Answer

Subject C 22330

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER– 19 EXAMINATION Subject Name: Electric circuits and network Model Answer

Subject C 22330

SUMMER-19 EXAMINATION Subject Name: Electric circuits and network Model Answer

Subject C 22330

SUMMER-19 EXAMINATION Subject C 22330 Subject Name: Electric circuits and network Model Answer

$$\frac{8 \text{tr} ?: - 8 \text{initarly find current the AB Branch}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7 + 103)}$$

$$\frac{\text{due to Source } V_2 = 100 \ \text{LO}^{\circ}}{(7$$

MAHARASHT (Autonomous) (ISO/IEC - 2700) rtified)

SUMMER-19 EXAMINATION Subject C 22330 Subject Name: Electric circuits and network Model Answer

<u>Brench</u> P3 1003 Hr'AB Adue to V, is I,' = 34.28 L-57.09 Convert these currents into Rectangular Form I,' = 18.63 - J28.78 II" = 8.823 - J14.71 : I AB Branch = I' + I' : I AB Branch = I, + I, " or c/n the (3+35) Branch = 27-453 - 543.49 · I AB Branch = I (3+35) = 51.43 (57.74) c) Sketch the phasor diagram for the nominal drawn circuit with justification of each phasor 6M drawn. Ans: **Consider series R-L circuit** Circuit diagram phasor diagram of RL circuit :1 Mark Where $V_R = Yoltage$ across the rol R. Phasor VL = Yeltage across the inductor 1 diagram = Total voltage of the circuit :3 Marks TT INL

MAHARASHT BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 2700) rtified)

> **SUMMER-19 EXAMINATION** Subject Name: Electric circuits and network Model Answer

Subject C 22330

Explanat Explanation: -Th RL circuit Resistor R & Inductor L' 9m ion :2Marks connected in series with a voltage supply of Vive since both R + 1 are connected in series, so the current in both the elements of the ext remains same. Te IR = IL = I let VR & VL be Voltagree drop across resistor of inductor. In Resistor the voltage VR f IR are in phase. Where as in Inductor, the voltage VL f current - are not in phase . The Voltage leads the current by go: Note: If the student has attempted to solve the question considering any one of the following circuits : Series R-C or R-L-C circuit or Parallel R-L or R-C or R-L-C circuit, give appropriate marks.

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total Marks
	a)	Use nodal analysis to calculate the current flowing in each branch of the network shown in Fig. No. 8 $\begin{array}{c} Fig. No. 8 \\ \hline Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.$	6M

Subject C 22330

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subj

Subject C 22330

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C 22330

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subj

Subject C 22330

$$S_{5} = \frac{5}{10} + \frac{5}{10} + \frac{1}{10} + \frac$$

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C 2

Subject C 22330

MAHARASHT Autonomous)

(Autonomous) (IS O/IEC - 2700 rtified)

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Subject C 22330

$$I_{0}^{"} = \frac{10 \lfloor 90^{\circ}}{5 \cdot 926 \lfloor -27 \cdot 61 \rfloor}$$

$$I_{2}^{"} = 1 \cdot 637 \lfloor 117 \cdot 64 + mp \rfloor$$
USING current division. Table,

$$I_{1}^{"} = 1 \cdot 637 \lfloor 117 \cdot 64 + mp \rfloor$$

$$I_{1}^{"} = 1 \cdot 637 \lfloor 117 \cdot 64 + mp \rfloor$$

$$= \frac{1 \cdot 637 \lfloor 117 \cdot 64 + mp \rfloor}{G \cdot 526 \lfloor 63 \cdot 43 \rfloor}$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 + mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor \Longrightarrow (14)$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor 162 \cdot 64 - mp \rfloor$$

$$I_{1}^{"} = 0 \cdot 596 \lfloor$$

SUMMER-	19 EXAMINATION	
---------	-----------------------	--

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

c)	Draw the two port network and determine the indicated parameters for the following configurations:	6M
	 (i) Cascade configurations (ABCD parameter) (ii) Series configurations (iii) Parallel configurations. 	

BOARD OF TECHNICAL EDUCATION MAHARAS HT 10480 0 (Autonomous) (IS O/IEC - 2700)

rtified)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject C 22330

MAHARASHTI (Autonomous) (ISO/IEC - 2700)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject C 22330

MAHARASHT (Autonomous) (IS O/IEC - 2700

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR COURSES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses

+91 93260 50669

V2V EdTech LLP

o v2vedtech

tified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject Code:

: 22330

Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	Define:	2M
		(i) Apparent power (ii) Real power	
	Ans:	(i) Apparent power	
		It is the product of rms values of applied voltage and circuit current.	1 M for
		Unit: volt-ampere (VA) OR kilo-volt-ampere (kVA) OR Mega-volt-ampere (MVA)	each dofinitio
		$S = VI = I^2 Z \text{ volt-ampere (VA)}$	n
		(ii)Real power	
		The active power is defined as the average power Pavg taken by or consumed by the given circuit.	
		(OR)	

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

	It is the power which is actually dissipated in the circuit resistance.	
	P =V.I.CosØ Unit: - Watt OR Kilowatt	
(b)	Write equation of resultant impedance in R-L circuit.	2M
Ans:	The equation of resultant impedance in R-L circuit	2 M for
	$Z = \sqrt{(R^2 + X_L^2)}$	n
	Where ,R=Resistance	
	X_L =Inductive Reactance = 2 π fL Ω .	
(c)	State condition for resonance in R-L-C series circuit.	2M
Ans:	The condition for resonance in R-L-C series circuit.	2M for
	i) Inductive Reactance should be equal to capacitive reactance. That is $X_L = X_C$	any two conditio
	ii) The power factor of the circuit is Cos ϕ = 1	ns
	iii)The voltage and current in the R-L-C series circuit are in phase with each other.	
	iv)Current in the circuit is maximum and given by I =V/R.	
	v)Impedance of the circuit is minimum and given by Z =R.	
(d)	Draw –	2M
	(i) Practical voltage source	
	(ii) Ideal current source	
Ans:	i) Practical voltage source	1 M for each diagram

Subject Name: Electric circuits and network

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

		$\begin{bmatrix} I_{1} \\ I_{2} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}$ $I_{1} = Y_{11}V_{1} + Y_{12}V_{2} \dots \dots 1$ $I_{2} = Y_{21}V_{1} + Y_{22}V_{2} \dots \dots 2$ $\downarrow \downarrow $	
			<u> </u>
Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any THREE of the following:	12- Total Marks
2	a)	Attempt any THREE of the following: For R-C series circuit draw	12- Total Marks 4M
2	a)	Attempt any THREE of the following: For R-C series circuit draw (i) Circuit diagram	12- Total Marks 4M
2	a)	Attempt any THREE of the following: For R-C series circuit draw (i) Circuit diagram (ii) Vector diagram	12- Total Marks 4M
2	a)	Attempt any THREE of the following: For R-C series circuit draw (i) Circuit diagram (ii) Vector diagram (iii) Waveform of voltage and current	12- Total Marks 4M
2	a) Ans:	Attempt any THREE of the following: For R-C series circuit draw (i) Circuit diagram (ii) Vector diagram (iii) Waveform of voltage and current i)Circuit diagram	12- Total Marks 4M
2	a) Ans:	Attempt any THREE of the following: For R-C series circuit draw (i) Circuit diagram (ii) Vector diagram (iii) Waveform of voltage and current i)Circuit diagram	12- Total Marks 4M 1M- circuit diagram
2	a) Ans:	Attempt any THREE of the following: For R-C series circuit draw (i) Circuit diagram (ii) Vector diagram (iii) Waveform of voltage and current i)Circuit diagram	12- Total Marks 4M 1M- circuit diagram, 1M-
2	a) Ans:	Attempt any THREE of the following: For R-C series circuit draw (i) Circuit diagram (ii) Vector diagram (iii) Waveform of voltage and current i)Circuit diagram	12- Total Marks 4M 1M- circuit diagram, 1M- vector
2	a) Ans:	Attempt any THREE of the following: For R-C series circuit draw (i) Circuit diagram (ii) Vector diagram (iii) Waveform of voltage and current i)Circuit diagram	12- Total Marks 4M 1M- circuit diagram, 1M- vector diagram, 2M-
2	a) Ans:	Attempt any THREE of the following: For R-C series circuit draw (i) Circuit diagram (ii) Vector diagram (iii) Waveform of voltage and current i)Circuit diagram	12- Total Marks 4M 1M- circuit diagram, 1M- vector diagram, 2M- wavefor

MAHARASHT BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 2700 tified)

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Subject Code: 22330

7

	• •	$v = V_m \sin \omega t$ i= $I_m \sin (t)$	t ₩t+•)		
b)	Compar (i) (ii) (iii) (iv)	e series and parallel resc Resonating frequency Impedance Current Magnification	onance on the basis of		4M
Ans:					1M fo
	S. No	Parameter	Series Circuit	Parallel Circuit	each point
	1	Resonating frequency	$f_r = \frac{1}{2\pi\sqrt{LC}}$	$f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$	
	2	Impedance	Minimum, Z = R	Maximum, Z = L/CR	
	3	Current	Maximum, I = V/R	Minimum, I = V/(L/CR)	
	4	Magnification	Voltage magnification takes place	Current magnification takes place	
c)	Explain source.	the suitable example to	convert a practical current sourc	e into equivalent voltage	4M

Subject Name: Electric circuits and network

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code:

» 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

9

1. From the given circuit (fig.a), Remove R_L from the terminals A and B and redraw the circuit as shown in Fig.b. 2. Calculate the open-circuit voltage V_{oc} which appears across terminals A and B. As seen, V_{oc} = drop across R_2 = IR_2 where I is the circuit current when A and B are open. $I = \frac{E}{R_1 + R_2 + r} \quad \therefore \quad V_{oc} = IR_2 = \frac{ER_2}{R_1 + R_2 + r} [r \text{ is the internal}]$ resistance of battery] It is also called 'Thevenin voltage' V_{th} . Now, imagine the battery to be removed from the circuit, leaving its internal resistance r behind and redraw the circuit, as shown in Fig.(c). When viewed inwards from terminals A and B, the equivalent resistance is given as, $R = R_2 || (R_1 + r) = \frac{R_2(R_1 + r)}{R_2 + (R_1 + r)}$ This is called Thevenin's equivalent resistance R_{th.} 4.Connect R_L back across terminals A and B (fig.d)from where it was temporarily removed earlier. Current flowing through RL is given by $I = \frac{V_{th}}{R_{th} + R_T}$ A R_{th} $\leq R_L$ Thevenin Source B Page 9/

Subject Name: Electric circuits and network

Subject Code: 22330

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	Explain the concept of initial and final conditions in switching circuits for elements R and L.	4M
	Ans:	Concept of Initial and final condition in switching circuits for R: Consider a resistor is connected to a voltage source, using a switch as shown in fig below $\qquad \qquad $	2M for resistan ce 2M for inductan ce
		The switch is closed at time t = 0, so we get v = iR which is time independent equation. Here current changes as per voltage without any time delay. There is no change in the value of resistor R, it remains same for initial condition and final condition. $ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	
		Concept of Initial and final condition in switching circuits for L:	
		Consider a inductor is connected to voltage source as shown in fig below:	

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

» 22330

Model Answer

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

$$= \frac{R_{12} (R_{23} + R_{31})}{R_{12} + R_{23} + R_{31}}$$

In case of star network the resistance between the terminals 1 and 2 is=R1+R2, so we get

$$R_{1} + R_{2} = \frac{R_{12} (R_{23} + R_{31})}{R_{12} + R_{23} + R_{31}}$$

$$R_{2} + R_{3} = \frac{R_{23} (R_{31} + R_{12})}{R_{12} + R_{23} + R_{31}}$$

$$R_{3} + R_{1} = \frac{R_{31} (R_{12} + R_{23})}{R_{12} + R_{23} + R_{31}}$$

$$\dots = H \& HIII$$

Subtracting equation(ii) from(i), we get

$$R_{1} - R_{3} = \frac{R_{12} R_{23} + R_{12} R_{31} - R_{23} R_{31} - R_{23} R_{12}}{R_{12} + R_{23} + R_{31}}$$

$$R_{1} - R_{3} = \frac{R_{12} R_{31} - R_{23} R_{31}}{R_{12} + R_{23} + R_{31}}$$

$$\dots = H \& HIIII$$

tified)

and a

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

	$2 R_{1} = \frac{R_{31} R_{12} + R_{31} R_{23} + R_{12} R_{31} - R_{23} R_{31}}{R_{12} + R_{23} + R_{31}}$ $R_{1} = \frac{R_{31} R_{12}}{R_{12} + R_{23} + R_{31}}$ $R_{2} = \frac{R_{12} R_{23}}{R_{12} + R_{23} + R_{31}}$ $R_{3} = \frac{R_{23} R_{31}}{R_{12} + R_{23} + R_{31}}$	
d)	State super position theorem. Write steps to find current in an element using super position theorem.	4M
Ans:	Statement of superposition theorem: In any linear network containing two or more sources, the current in any element is equal to algebraic sum of the current caused by individual source acting alone, while the other sources are replaced for the time being by resistances equal to their internal resistances.	2M – statem nt
	Steps to find current using superposition theorem:	2NA fam
	1. Select any one energy source.	steps
	2. Replace all other energy sources i.e. voltage source by short circuit and current source by open circuit.	
	3. Calculate voltage drop and branch current due to selected energy source.	
	4. Repeat steps 1,2,3 for each source individually.	

tified)

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject Code: 22330

Q. No.	Sub Q. N.	Answers N S	Marking Scheme
4		Attempt any THREE of the following : 1	12- Total Marks
	(a)	A series combination of resistance 100 ohm and capacitance 50µf is connected in series to a 230 V, 50HZ supply. Calculate (i) Capacitive reactance (ii) Current (iii) Power factor (iv) Power consumed	4M
	Ans:	Solution: For RC series circuit	
		1	1M
			1M 1M

15

TONER O BOARD OF TECHNICAL EDUCATION رككر

tified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject Code: 22330

1		
	Given R=100 M, C=50 Mf, V=230V, f=50 Hz (i) Capacitive Reactance $X_c = \frac{1}{2\pi fc} = \frac{1}{2\pi x 50 x 50 x 10^6} = \frac{63.66 M}{2}$	1M
	(1) Current $I = \frac{V}{Z} = \frac{V}{\sqrt{R^2 + \chi_c^2}} = \frac{230}{\sqrt{(100)^2 + (63.66)^2}}$ $= \frac{230}{118.54} = \frac{1.94}{1.94} \text{ A}$	
	(iii) power factor $\cos \phi = \frac{R}{Z} = \frac{100}{11854} = 0.8435$ leading	
	(iv) Power consumed $P = V I \cos \phi = 230 \times 1.94 \times 0.8435$ = 376.36 W	
(b)	Two unpedauces given by Z1 = 10 + j5 and Z2 = 8 + j9 are joined in parallel and connected across a voltage of V = 200 + j0. Calculate the circuit current and branch currents. Draw the vector diagram.	4M
Ans:	Solution: Given, Z1=10+j5, Z2=8+j9, V=200+j0	

BOARD OF TECHNICAL EDUCATION

tified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

	Given: $z_1 = 10 + j5$, $z_2 = 8 + j9$ and $v = 200 + j0$	
	To find circuit current first we have to calculate	
	total admittance	
	(Total admittance	11
	$Y = Y_1 + Y_2 = \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{(10+15)} + \frac{1}{(8+13)}$	
	$= \frac{1}{11.18 \angle 26.56^{\circ} + \frac{1}{12.04 \angle 48.36^{\circ}}}$	
	= 0.0892-26.56° + 0.0832-48.36°	
	= (0.08 - 0.04j) + (0.06 - 0.06j)	
	= 0.14 - 0.1j	
	$= 0.17 \ \text{L} - 35.53^{\circ}$	
	C'autit a prost T a study	1N
	= (20020) (0.1/235.53)	
	<u>342-35.53</u> A	
	@ Branch current II = V × YI	10
	$=(200 \ L0^{\circ})(0.089 \ L-26.56)$	TIV
	= 17.8 2-26.56° A	
	$I_2 = V \times Y_2$	
	$= (200 \ 20^{\circ}) (0.083 \ 2-48.36^{\circ})$	
	$= 16.6 \ 2 - 48.36^{\circ} \ A$	11
	@ Vector Diagram	
	95·13 [°]	
	V= 200 V	
	1,15	
	^D L ₂ ^C L	
	1. 이 이 이는 것 것 같은 것이 아이 감간한 이렇지요. 그는 것 같은 것은 이 이는 것 있는 것이 있었던 것에서 관객이다. 그는 것 것 같은 것 같은 것이 있는 것이 있는 것이 있다. 가지 않는 것 같은 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것이 없다. 것이 있는 것이 없는 것이 없는 것이 있는 것이 없는 것이 없는 것이 있는 것이 없는 것이 있 것이 없는 것이 않는 것이 없는 것이 없다. 않은 것이 없는 것이 않는 것이 없는 것이 없 않는 것이 없는 것이 않는 것이 않는 것이 없는 것이 않는 것이 않는 것이 않은 것이 않는 것이 않는 것이 없다. 것이 않은 것 않은 것이 없는 것이 없는 것이 않는 것이 않는 것이 없는 것이 않는 것이 않는 것이 않는 것이 같이 않는 것이 않는 것이 않은 것이 없는 것이 없는 것이 않은 것이 없다. 것이 않은 것이 없는 것이 않은 것이 않 것이 않은 것이 않이 않이 않이 않이 않이 않이 않이 않 않 않 않이 않이 않이 않이	
(c)	An a.c series circuit has resistance of 10ohm, inductance of 0.1H and capacitance of 10µ voltage applied to circuit is 200V. find	f, 4N
	(i) Resonant frequency	
	(ii) Current at resonance	
	(iii) Power at resonance	

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Ans:	Solution: For RLC series circuit	
	Given: R= 10.1. L= 0.1.H, C= 10.1.F, V= 200 V	
	(i) Resonant frequency $f_7 = \frac{1}{2\pi \sqrt{Lc}} = \frac{1}{2\pi \sqrt{0.1 \times 10 \times 10^6}}$	2М
	(ii) current at resonance, $I = \frac{V}{Z}$ = 159.13 Hz	1M
	$=\frac{V}{R}=\frac{200}{10}=20$ A	
	(iii) Power at resonance, $P = V I \cos \phi$ $= 200 \times 20 \times 1 = 4000 \text{ W}$	1M
	= <u>4</u> KW	

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

(e)	Find the Norton equivalent resistance for the network shown in Fig No. 2	4M
	1502 A millo A 602	
	20v Jion 4vr Fig. No. 2	
	<u> </u>	
Ans:	Solution: To find Norton's equivalent resistance removing voltage source and current source. Voltage source is replaced by short circuit and current source is replaced by open circuit so, we get circuit as	Diagram :1M
		R _N calculati n :3M

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code: 22330

BOARD OF TECHNICAL EDUCATION رككر

tified)

Subject Name: Electric circuits and network

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

BOARD OF TECHNICAL EDUCATION

tified)

Subject Name: Electric circuits and network

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

A, B, C, D are the parameters of cascade automy, from

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \end{bmatrix} \begin{bmatrix} A_2 & B_2 \\ C_2 & D_1 \end{bmatrix}$$
for cascade configuration, ABCD parameters has to
be multiplied
ii)Series Configuration
 V_1
 V_1
 V_2
 V_1
 V_2
 V_1
 V_2
 V_3
 V_2
 V_1
 V_2
 V_3
 V_3
 V_3
 V_4
 V_2
 V_3
 V_3
 V_4
 V_2
 V_3
 V_3
 V_4
 V_2
 V_3
 V_3
 V_4
 V_2
 V_3
 V_4
 V_5
 V_4
 V_5
 $V_$

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

		Marks
a)	Find current in 40 Ω and 10 Ω in Fig no. 4 node voltage analysis method.	6M

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code: 22330

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code: 22330

BOARD OF TECHNICAL EDUCATION MAHARASHT (Autonomous) tified) (ISO/IEC - 2700

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

: 22330

tified)

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code: 22330

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code:

: 22330

Model Answer

0.25 0.28

35